Key Brain Damage Research

Hyperbaric oxygen therapy to improve cognitive dysfunction and encephalatrophy induced by NO for recreational use: a case report.

NO, or laughing gas, is generally used for anesthesia, especially in stomatology and pediatrics but is also commonly used recreationally. Cognitive dysfunction induced by the recreational use of NO is rare. Here, we present the case of an 18-year-old female with a history of having used NO recreationally for 5 months who suffered from encephalatrophy and severe cognitive dysfunction. All of the symptoms gradually subsided with ~20 days of treatment by hyperbaric oxygenation. We hypothesize that the long-term use of NO may have induced a chronic state of systemic hypoxia that further induced cerebral atrophy with impaired cognitive function. Hyperbaric oxygen therapy (HBOT) is reported here for the first time as an important therapeutic element for treating NO toxicity due to recreational use.

HYPERBARIC OXYGEN THERAPY- BASICS AND NEW APPLICATIONS

Hyperbaric oxygen therapy (HBOT) serves as primary or adjunctive therapy for a diverse range of medical conditions. The indication for HBOT can be related to either pressure (decompression sickness or air emboli) or tissue hypoxia. It is now realized, that the combined action of hyperoxia and hyperbaric pressure, leads to significant improvement in tissue oxygenation while targeting both oxygen and pressure sensitive genes, resulting in improved mitochondrial metabolism with anti-apoptotic and anti-inflammatory effects. Clinical studies published in recent year’s present convincing evidence that HBOT can be the coveted neurotherapeutic method for brain repair. Here we discuss the multi-faceted role of HBOT in wound care in general and in neurotherapeutics in detail.

Case control study: hyperbaric oxygen treatment of mild traumatic brain injury persistent post-concussion syndrome and post-traumatic stress disorder.

Mild traumatic brain injury (TBI) persistent post-concussion syndrome (PPCS) and post-traumatic stress disorder (PTSD) are epidemic in United States Iraq and Afghanistan War veterans. Treatment of the combined diagnoses is limited. The aim of this study is to assess safety, feasibility, and effectiveness of hyperbaric oxygen treatments (HBOT) for mild TBI PPCS and PTSD. Thirty military subjects aged 18-65 with PPCS with or without PTSD and from one or more blast-induced mild-moderate traumatic brain injuries that were a minimum of 1 year old and occurred after 9/11/2001 were studied. The measures included symptom lists, physical exam, neuropsychological and psychological testing on 29 subjects (1 dropout) and SPECT brain imaging pre and post HBOT.

Increased circulating stem cells and better cognitive performance in traumatic brain injury subjects following hyperbaric oxygen therapy.

Increased circulating stem cells and better cognitive performance in traumatic brain injury subjects following hyperbaric oxygen therapy.

Traumatic brain injury (TBI) may cause persistent cognitive dysfunction. A pilot clinical study was performed to determine if hyperbaric oxygen (HBO₂) treatment improves cognitive performance. It was hypothesized that stem cells, mobilized by HBO₂ treatment, are recruited to repair damaged neuronal tissue. This hypothesis was tested by measuring the relative abundance of stem cells in peripheral blood and cognitive performance during this clinical trial. The subject population consisted of 28 subjects with persistent cognitive impairment caused by mild to moderate TBI suffered during military deployment to Iraq or Afghanistan. Fluorescence-activated cell sorting (FACS) analysis was performed for stem cell markers in peripheral blood and correlated with variables resulting from standard tests of cognitive performance and post-traumatic stress disorder: ImPACT, BrainCheckers and PCL-M test results. HBO₂ treatment correlated with stem cell mobilization as well as increased cognitive performance. Together these results support the hypothesis that stem cell mobilization may be required for cognitive improvement in this population.

Hyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients.

Background: Recent clinical studies in stroke and traumatic brain injury (TBI) victims suffering chronic neurological injury present evidence that hyperbaric oxygen therapy (HBOT) can induce neuroplasticity. Objective: To assess the neurotherapeutic effect of HBOT on prolonged post-concussion syndrome (PPCS) due to TBI, using brain microstructure imaging. Methods: Fifteen patients afflicted with PPCS were treated with 60 daily HBOT sessions. Imaging evaluation was performed using Dynamic Susceptibility Contrast-Enhanced (DSC) and Diffusion Tensor Imaging (DTI) MR sequences. Cognitive evaluation was performed by an objective computerized battery (NeuroTrax). Results: HBOT was initiated 6 months to 27 years (10.3 ± 3.2 years) from injury. After HBOT, DTI analysis showed significantly increased fractional anisotropy values and decreased mean diffusivity in both white and gray matter structures. In addition, the cerebral blood flow and volume were increased significantly. Clinically, HBOT induced significant improvement in the memory, executive functions, information processing speed and global cognitive scores. Conclusions: The mechanisms by which HBOT induces brain neuroplasticity can be demonstrated by highly sensitive MRI techniques of DSC and DTI. HBOT can induce cerebral angiogenesis and improve both white and gray microstructures indicating regeneration of nerve fibers. The micro structural changes correlate with the neurocognitive improvements.

Hyperbaric oxygen therapy for traumatic brain injury: bench-to-bedside.

Traumatic brain injury (TBI) is a serious public health problem in the United States. Survivors of TBI are often left with significant cognitive, behavioral, and communicative disabilities. So far there is no effective treatment/intervention in the daily clinical practice for TBI patients. The protective effects of hyperbaric oxygen therapy (HBOT) have been proved in stroke; however, its efficiency in TBI remains controversial. In this review, we will summarize the results of HBOT in experimental and clinical TBI, elaborate the mechanisms, and bring out our current understanding and opinions for future studies.

Treatment of persistent post-concussion syndrome due to mild traumatic brain injury: current status and future directions.

Persistent post-concussion syndrome caused by mild traumatic brain injury has become a major cause of morbidity and poor quality of life. Unlike the acute care of concussion, there is no consensus for treatment of chronic symptoms. Moreover, most of the pharmacologic and non-pharmacologic treatments have failed to demonstrate significant efficacy on both the clinical symptoms as well as the pathophysiologic cascade responsible for the permanent brain injury. This article reviews the pathophysiology of PCS, the diagnostic tools and criteria, the current available treatments including pharmacotherapy and different cognitive rehabilitation programs, and promising new treatment directions. A most promising new direction is the use of hyperbaric oxygen therapy, which targets the basic pathological processes responsible for post-concussion symptoms; it is discussed here in depth.

Clinical results in brain injury trials using HBO2 therapy: Another perspective.

The current debate surrounding the use of hyperbaric oxygen (HBO2) for neurological indications, specifically mild to moderate chronic traumatic brain injury (mTBI) and post-concussion syndrome (PCS), is mired in confusion due to the use of non-validated controls and an unfamiliarity by many practitioners of HBO2 therapy with the experimental literature. In the past 40 years, the use of an air sham (21% oxygen, 1.14-1.5 atmospheres absolute/atm abs) in clinical and animal studies, instead of observational or crossover controls, has led to false acceptance of the null hypothesis (declaring no effect when one is present), due to the biological activity of these “sham” controls. The recent Department of Defense/Veterans Administration (DoD/VA) sponsored trials, previous published reports on the use of HBO2 therapy on stroke and mTBI and preliminary reports from the HOPPS Army trial, have helped to highlight the biological activity of pressurized air, validate the development of a convincing control for future studies and demonstrate the effectiveness of a hyperbaric intervention for mTBI/ PCS. Approval of HBO2 for neurological indications, especially for mTBI/PCS, should be granted at the federal, state and certifying body levels as a safe and viable treatment for recovery in the post-acute phase.

Hyperbaric oxygen therapy for the treatment of traumatic brain injury: a meta-analysis.

Compelling evidence suggests the advantage of hyperbaric oxygen therapy (HBOT) in traumatic brain injury. The present meta-analysis evaluated the outcomes of HBOT in patients with traumatic brain injury (TBI). Prospective studies comparing hyperbaric oxygen therapy vs. control in patients with mild (GCS 13-15) to severe (GCS 3-8) TBI were hand-searched from medical databases using the terms “hyperbaric oxygen therapy, traumatic brain injury, and post-concussion syndrome”. Glasgow coma scale (GCS) was the primary outcome, while Glasgow outcome score (GOS), overall mortality, and changes in post-traumatic stress disorder (PTSD) score, constituted the secondary outcomes. The results of eight studies (average age of patients, 23-41 years) reveal a higher post-treatment GCS score in the HBOT group (pooled difference in means = 3.13, 95 % CI 2.34-3.92, P < 0.001), in addition to greater improvement in GOS and lower mortality, as compared to the control group. However, no significant change in the PTSD score was observed. Patients undergoing hyperbaric therapy achieved significant improvement in the GCS and GOS with a lower overall mortality, suggesting its utility as a standard intensive care regimen in traumatic brain injury.

Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury – randomized prospective trial.

Traumatic brain injury (TBI) is the leading cause of death and disability in the US. Approximately 70-90% of the TBI cases are classified as mild, and up to 25% of them will not recover and suffer chronic neurocognitive impairments. The main pathology in these cases involves diffuse brain injuries, which are hard to detect by anatomical imaging yet noticeable in metabolic imaging. The current study tested the effectiveness of Hyperbaric Oxygen Therapy (HBOT) in improving brain function and quality of life in mTBI patients suffering chronic neurocognitive impairments. The trial population included 56 mTBI patients 1-5 years after injury with prolonged post-concussion syndrome (PCS). The HBOT effect was evaluated by means of prospective, randomized, crossover controlled trial: the patients were randomly assigned to treated or crossover groups.

Archives

Categories